

SeisRP

info@traceseis.com

Consists of three modules, each with three programs. The analysis and modeling modules (SeisRp and SeisMod) are based on state-of-the-art rock physics relationships. These support the reservoir characterization module (SeisChar) in which parameters to compute reservoir properties (ϕ , lithology and fluids) are estimated through linear inversion of attributes computed from well-log or synthetic data

State of development to October 2019 Dark gray buttons correspond to operational programs

SeisRP

- Computes reflectivities, relative properties and absolute properties
- Generates attributes from wireline or modeled data at well-log or seismic resolutions in depth or two-way-time
- Fluid substitution. Different fluids and saturations
- SeisMod
- SeisChar

SeisRP computes reflectivities and absolute and relative properties.

Some observations about relative properties

- Measure interval properties
- Do not require a Low Frequency Model (LFM)
- Easy to compute from AVO attributes
- Better estimation of reservoir properties (SeisChar)

SeisRP: Analysis at well-log resolution

Analysis at Well-log Resolution

Well: NMR Petrophysics #1 Pay

TraceSeis Inc. Geophysical Services Scatter and log plots of rock properties, fluid properties and reservoir properties. Byproducts of the "Well-log inversion" can be displayed for some of the rock physics models

Rock properties and derivates

Is

vp/vs

ELASTIC

El near

El far

GI

Absolute	Relative	Reflectivities
Vp Vs Density BritIndx E E*Rho K*Rho Ksat Lambda Lambda*Rho MuDry Mu*Rho Ip	Vp Vs Density E E*Rho K*Rho Ksat Lambda Lambda*Rho MuDry Mu*Rho Ip PModulus	Vp Vs Density E E*Rho K*Rho Ksat Lambda Lambda*Rho MuDry Mu*Rho Ip P-Modulus
Poisson	Poisson	Poisson

vp/vs

ELASTIC

El near

El far

GI

vp/vs

SHUEY

STACKS Stack Near Stack

Far Stack

Ro

Go

Some of the fluid properties available

Byproducts of WLI for some of the models

SW		KBiot
HC		KdrvE
Brine		Kdry (
		Kalay (
FLUIDS MIX		Kary F
k fluids mix		Kdry (
Density fluids mix		Kdry/
Vp fluids mix		Kdry/
		Ko
ENVIRONMENTAL PROPERTIES		
Pressure		MuBio
Temperature		MuDa
		MUDI
IN SITU FLUID PROPERTIES		MuDŋ
k in situ Live Oil		MuDŋ
Density in situ Live Oil		MuDry
Vp in situ Live Oil		MuDry
SG in situ Live Oil		Muo
API in situ Live Oil		
GORin situ Live Oil		

KdryExp
Kdry (Gassmann)
Kdry Fixed (Gassmann)
Kdry (Model)
Kdry/Ko (Gassmann)
Kdry/Ko (Model)
Ko
MuBiot
MuDryExp
MuDry (Gassmann)
MuDry (Model)
MuDry/Muo (Gassmann)
MuDry/Muo (Model)
Muo

SeisRP

- Computes reflectivities, relative properties and absolute properties
- Generates attributes from wireline or modeled data at well-log or seismic resolutions in depth or two-way-time
- Fluid substitution. Different fluids and saturations
- SeisMod
- SeisChar

Analysis at seismic resolution Wavelet QC

SeisRP: Analysis at well-log and seismic resolution

SeisRP

- Computes reflectivities, relative properties
 and absolute properties
- Generates attributes from wireline or modeled data at well-log or seismic resolutions in depth or two-way-time
- Fluid substitution. Different fluids and saturations
- SeisMod
- SeisChar

SeisRP: Fluid Properties

Reservoir fluids' composition (GOR, API, SG, salinity) and environmental variables (pressure and temperature) are used to compute bulk moduli and density of fluids.

Properties for three fluids are computed: in-situ hydrocarbons, replacement hydrocarbons, and brine.

Depth variant or constant fluid properties can be computed

SeisRP – Fluid substitution. In-situ

-0.15

Angle, deg

In-situ fluids. The AVO extracted at the red and blue horizontal lines in tracks 1 and 2 correspond to a class 4 anomaly, as observed in the plot at right

SeisRP – Fluid substitution. Sw = 1.0

-0.1

-0.15

0

15

10

5

20

Angle, deg

25

30

35

40

45

8.0

07

0.6

0.5

0.4

0.3

0.2

0.1

Water saturation = 1.0. Compare with the previous slide. The light-blue arrow in the lower part of track 1 shows the slight time difference between the in-situ (previous slide) and wet reservoir (this slide) associated to fluids with different velocities